Effective Lab Oral Report - Spring 2020

David Hertzog, Eugene V Colla, Virginia Lorenz University of Illinois at Urbana-Champaign

We will present some of my slides and many Phys 403 student slides as examples. We can talk about why they are well constructed examples.
(All remarks about real slides are in these red boxes)
An eye-catching feature on slide 1

This is a technical presentation, so you must develop it as a logical sequence

Sentence title tells what the slide is about ... the rest of the slide supports the assertion
\square What physics did you address?
\square What technology?
\square Define your special vocabulary here

Fonts matter
Arial
Comic Sans
Times
Courier

X ㅁ What are your results?
\square Polished graphs, proofs, numerical findings
\square Principal difficulties and uncertanties

X Conclusions

Font size and slide background choice

Optical Pumping - 32 bold (Title)

Tunneling 18-20 (Body text)

Courtesy to Wikipedia 14 (comments)

Optical Pumping - 32 bold (Title)
 Tunneling 18-20 (Body text)

Courtesy to Wikipedia 14 (comments)

Too dark!

Font size and slide background choice

Optical Pumping - 32 bold (Title)

Tunneling 18-20 (Body text)

Courtesy to Wikipedia 14 (comments)

Make contrast between text and backgrtound

Presentation components and grading scale.

CRITERIA	Max. Score
Attended both days	5
Title was sent to instructor on time	3
First slide has appropriate title, name, affiliation, date	3
Scientific background, goal and motivation were clearly and correctly presented	20
Research activities were clearly and correctly presented	20
Results were clearly and correctly presented	20
Technical aspects: good balance of text and figures, good quality figures, appropriate citations, correct spelling, correct number of significant digits, etc.	20
Time management: good balance between Introduction-Procedure- Results-Analysis	3
Spoke clearly, at a good pace, loud enough, etc.	3
Finished on time and answered questions clearly and correctly	3
Final Totals (100)	100

Physics 403, Fall 2013
University of Illinois at UrbanaChampaign

Affiliation

Phase transition of Helium 4

- Below $\mathrm{T}_{\lambda}=2.17 \mathrm{~K}$, helium exists in mixture of superfluid and normal liquid helium.

The experimental concept in one animation ...

What happen if they are struck by pulses?

A pulse or a series of pulses is used to change the net magnetization of system. Pulsed NMR!

90° Pulse

3/3/2020
Physics 403

$$
\begin{gathered}
? \\
M(t)=M_{0} e^{\frac{-t}{T_{2}}}
\end{gathered}
$$

What happens to a nucleus in a magnetic field?

(Courtesy of Bishop. K)
$\Delta E=\gamma \cdot \hbar \cdot B_{0}=\hbar \omega_{0}-$ Lammor frequence

Phase Transition in BaTiO_{3}

Polarization

Physics 403

Phase Transition in BaTiO_{3}

Physics 403

Phase Transition in BaTiO_{3}

Polarization

Phase Transition in BaTiO_{3}

Polarization

Everybody loves an optical bench, but unless you map out the elements and the beam paths, it doesn't mean much

Experimental Apparatus

$$
\begin{array}{ll}
\text { R }
\end{array}
$$

[^0]都

An example of image which is nice but does not help too much

Magnetic Field Calibration

\square The magnetic field from the Earth and other residual magnetic fields is minimized by rotating the stand and adjusting the vertical field coils to minimize the zero field peak width.
\square With the main field coils off, the sweep field is applied to determine the center of the zero field resonance (was found to be at 0.251 A ; using the geometry of the coils, this corresponds to 0.151 gauss).

םRF field is adjusted to provide maximum transition probability.

Setup diagrams, apparatus, measuring idea...

Samples: preparation, configuration etc.

Setup of Source and Detectors

Results

Difference in Up-Down (unnormalized)

Fit equation $N e^{\frac{-t}{\tau}}(1+\alpha \cos (\omega t+\delta))$

Courtesy Samuel Homiller and Pakpoom Buabthong Fall 2013

Results

Difference in Up-Down (normalized)

Fit equation $N e^{\frac{-t}{\tau}}(1+\alpha \cos (\omega t+\delta))$

Courtesy Samuel Homiller and Pakpoom Buabthong Fall 2013

Results - witnessing a mystery?

Presenting data is your most important and challenging task

Fitting to the Curie-Weiss law

$$
\begin{gathered}
\varepsilon^{\prime}=\frac{C}{T-T_{C}}+o f f \\
C=3563.3 \pm 0.4 \mathrm{~K} \\
T_{C}=118.9825 \pm 0.0003 \mathrm{~K}
\end{gathered}
$$

Courtesy Zongyuan Wang and Arnulf Taylor Su 2017

AFM of Optical Data Storage Media

CD

Blu-Ray

	CD	DVD	Blu-Ray
Mark length	$0.99-2.96$	$0.48-1.45$	$0.14-0.41$
Track pitch	1.63	1.00	0.40
Track width	0.50	0.24	0.15

Units in $\mu \mathrm{m}$
$\left.V=C \sqrt{\left(\frac{T-T_{\text {offset }}}{T_{\lambda}}\right)\left(1-\left(\frac{T-T_{\text {offset }}}{T_{\lambda}}\right)^{5.6}\right)} \longrightarrow V=C\left[\left(\frac{T-T_{\text {offset }}}{T_{\lambda}}\right)\left(1-\left(\frac{T-T_{\text {offset }}}{T_{\lambda}}\right){ }^{\beta}\right)\right]^{\gamma}\right]^{\gamma}$
Offset, intrinsic to the expeliment

$$
\begin{aligned}
& C \approx 26 \\
& T_{\lambda} \approx 2.17
\end{aligned}
$$

Perform the 5 parameter fit-

The values that are obtained are not very close to the expected values

Also, the fit is not the best

Try to fit the data with this function

The data refuses to fit to

$$
\mathrm{V}=\left(1-\frac{\mathrm{T}-\mathrm{T}_{\text {ofisic }}}{\mathrm{T}_{\lambda}}\right)^{\gamma}
$$ this function

Finish your talk with the data analysis and conclusions and a slide showing the main points you want us to remember

- Make sure you discuss the principal uncertainties.
- For most of these experiments, it will be how accurately does your instrument measure something
- A few experiments will also have statistical uncertainties ... more data leading to a better finding
- Include a representative (simplified) graphic
- This slide will be up during question period so this graphic will get burned into people's memory
- Because this is a lab, offer some advice for others who follow

Typical Problems

Great Data but lines are too thick, and symbols are too small

Typical Problems

Too many lines - graph should be "polished" (Optical Pumping)

Typical Problems

Use more contrast color for lines

Deadlines

\square All presentation titles should be submitted not later than on midnight Thursday March $5^{\text {th }}$
\square Presentation files should be uploaded electronically not later than:

Sections 1 and 2 (March 10 ${ }^{\text {th }}$ numbers from 1 to 14) March $10^{\text {th }} 11$ am

Sections 3 and 4 (March $12^{\text {th }}$; numbers from 15 to 28) March $12^{\text {th }} 11$ am

[^0]: